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ABSTRACT 

We consider quasi-static displacement-controlled loading through one stress 
cycle of a shape-memory tensile bar modeled as a one-dimensional, 
two-phase elastic solid. Our objective is to explore the effect on the 
associated hysteresis loop of various qualitatively different types of kinetic 
relations, bearing in mind certain features of such loops that have been 
observed experimentally. We show that when the model involves a kinetic 
relation that is "unstable" in a definite sense, "stick-slip" motion of the 
interface between phases and serration of the accompanying stress- 
elongation curve are both predicted at slow elongation rates. We also show 
that a "nonhomogeneous" kinetic relation intended to model the effect of 
micro-obstacles on interface motion also leads to irregular interface motion 
and a serrated stress-elongation curve, in this case at all elongation rates. 

Keywords: hysteresis, kinetic relation, shape-memory, stick-slip. 

1. Introduction. When tensile bars composed of shape-memory materials such as NiTi 

or AgCd are subjected to quasi-static cyclic mechanical loading, hysteresis loops are usually 

observed; see, for example, Krishnan & Brown (1973), Krishnan (1985), Shaw and Kyriakides 

(1995). For a given material, the size and other qualitative features of such loops usually change 

with loading rate and with the temperature at which the test takes place. 
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According to some simple continuum models of the underlying phase transformation in 

shape-memory tensile bars, the hysteretic response to slow cyclic loading arises from the 

dissipation associated with the motion of the sharp interface, or phase boundary, between two 

metastable phases present in the bar; see Abeyaratne & Knowles (1991, 1992). In such models, 

the velocity of a phase boundary is governed by a kinetic relation, which expresses the jump in 

the Gibbs free energy per unit reference volume across the interface, denoted here by f, in terms 

of the phase boundary velocity s. Usually it is assumed that the kinetic relation is such that f 

increases with increasing s (monotonic kinetics) and that the relation between f and s is 

independent of the instantaneous location of the phase boundary (homogeneous kinetics). With 

both of these assumptions in force, the simple models do indeed predict hysteretic behavior, but 

they do not predict certain experimentally observed features of hysteresis loops, such as the 

serrations often seen in the load-elongation curves (Krishnan & Brown (1973), Krishnan (1985)), 

or the accompanying "jerky motion of the transformation front" (Krishnan (1985)). Indeed, in 

the thermal cycling experiments on single crystals of AuCd carried out by Chang (1952), phase 

boundary velocity as a function of time was found to be "stick-slip" in character. 

In the present paper, we show that these latter features may be predicted by the simple 

models, provided either monotonicity or homogeneity of the kinetic relation is relinquished. 

The effect of abandoning monotonicity while retaining homogeneity of the kinetic 

relation has been explored by Rosakis & Knowles (1996) in certain problems for shape-memory 

bars for which inertia is important. In this reference, it is shown that significant qualitative 

changes in the dynamic response predicted by the simple models result from non-monotonic 

kinetics. In particular, phase boundary motion caused by impact at the end of an elastic bar may 

be of stick-slip type under these conditions, in contrast to the smooth phase boundary advance 

predicted by a monotonic, homogeneous kinetic relation. A physical argument suggesting that a 
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non-monotonic kinetic relation may be appropriate for rapidly propagating phase boundaries in 

certain martensitic transformations was given by Owen, Schoen & Srinivasan (1970). 

In fracture mechanics, the counterpart of a kinetic relation is the relation between fracture 

toughness and crack-tip velocity. Non-monotonic versions of the latter relation, which lead to 

stick-slip crack-tip motion, have been inferred from experiments as well as predicted by various 

models. A particular model of this kind and a review of relevant literature have been given by 

Webb &Aifantis (1995). 

In what follows, we examine the predicted response of bars to displacement-controlled 

quasi-static loading in the same purely mechanical context employed by Rosakis & Knowles 

(1996), inertial and thermal effects being suppressed. In the next section, we describe the 

one-dimensional model on which our discussion is based. In Section 3, we determine the 

predictions of the model for displacement-controlled loading and unloading when the kinetic 

relation is both monotonic and homogeneous. With such conventional kinetics, the model is 

capable of exhibiting rate-dependence of the stress-response as well as either load-drop or 

load-rise upon nucleation, but the predicted phase boundary motion is smooth, and there is no 

serration in the stress-elongation curves. Section 4 is concerned with the effect of 

non-monotonic but homogeneous kinetics for the same loading program. Here it is found that, 

for sufficiently small elongation rates, phase boundary motion is of stick-slip type, and the 

stress-elongation curves are serrated, while at intermediate or high loading rates, phase boundary 

motion is smooth and there are no serrations.   Finally, in Section 4 we study non-homogeneous 

but monotonic kinetics that crudely model the effect on phase boundary motion of defects at the 

microscale. In this model, jerky motion of the phase boundary and serration of the stress- 

elongation curve occur at all elongation rates, although stick-slip interface motion arises only for 

small loading rates. 
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2. The model. Consider a nonlinearly elastic bar that occupies the interval [0, L] of the 

x-axis in the reference configuration. In an equilibrium deformation, the particle at x in the 

reference state is carried to x + u(x), where u is the displacement, and y(x) = u'(x) is the 

corresponding strain. The nominal stress a(x) acting on the particle located at x in the reference 

state is related to y(x) by the relation 

c = O(Y) = W'Cy),   y>-l, (2.1) 

where W(y) is the strain energy per unit volume at the strain y the restriction y > -1 assures that 

the deformation is one-to-one. For elastic materials capable of existing in more than one phase, 

the relation (2.1) between stress and strain is not monotonic; see Ericksen (1975). For a 

two-phase elastic material, the simplest such relation corresponds to the "trilinear" stress-strain 

curve shown in Figure 1. The two rising portions of this curve correspond to the stress response 

of the two metastable phases of the material; they are described by 

A 

a = c(y) = • 
HY,    -1<Y<YM, 

H(Y-YT).   Y>Ym- 
(2.2) 

Here u. is Young's modulus, which is taken to be the same in both phases for simplicity, and 

YT > 0 is the transformation strain from the low-strain phase (-1 < y < y  ) to the high-strain 

phase (Y> Ym)- In this simple model, YT is independent of stress. The declining branch of the 

stress-strain curve represents the unstable phase of the material. 

For equilibrium in the absence of body forces, the stress a must be independent of x. If o 

is between a   and a   (Figure 1), the corresponding strain need not be constant, even though 

G '(x) = 0. In particular, one may have an equilibrium mixture with two metastable phases 

separated by a phase boundary whose referential position is, say, x = s; for definiteness, suppose 
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that the high-strain phase is to the left of the phase boundary, while the particles for which 

s < x < L are in the low-strain phase. For a stress a in this range, the respective strains y, y  in 

the high- and low-strain phases are found from (2.2) to be 

y = yT + c/\i,   y+ = a/\i. (2.3) 

The Gibbs free energy per unit reference volume is G(y CJ) = W(y) -ay Bearing in 

mind that o is constant along the bar, the jump in G across the phase boundary at x = s is equal to 

f = W(y+) - W(y") - c (Y+
- Y") = f    ky) dy - a (Y+

 - y~); (2.4) 
Y 

f is the driving force per unit cross-sectional area of the bar acting on the phase boundary 

(Abeyaratne & Knowles (1991)). Computing the area under the stress-strain curve involved in 

(2.4)  and making use of (2.3) leads to 

f = YT(G-aJ, (2.5) 

where G* = (G.,+ c )/2 is the Maxwell stress for the material; o* is the stress that cuts off * M      m '    * 

triangles A and B of equal area from the stress-strain curve of Figure 1. 

In this mixed-phase state, the overall elongation of the bar is given by 

6 = y s + Y+
(L - s) = GL/\I + YT s ; (2.6) 

when s = 0, the bar is entirely in the low-strain phase, while it is in the high-strain phase when 

s = L. 



Now consider a quasi-static process, in which stress, strain, phase boundary location and 

elongation in the formulas above are functions of time: a = G(t), y~= f(t), s = s(t), 8 = 5(t). In 

such a process, the difference 

D(t) = a(t) 8(t) - d/dt [   W(y(x, t)) dx. (2.7) 

is the dissipation rate. One can show that D(t) = f(t) s(t), where f(t) is the driving force per unit 

area at time t as in (2.4) and s(t) is the phase boundary velocity; see Abeyaratne & Knowles 

(1991). The second law of thermodynamics then requires that 

f(t) s(t) > 0. (2.8) 

Now suppose, for example, that the elongation history 5(t) is prescribed. From (2.6), it is 

clear that a(t) cannot be determined from a knowledge of elongation history alone; s(t) must be 

known as well. To remove this indeterminacy, one imposes a kinetic relation connecting f and s: 

f(t) = cp(s(t), s(t)), where the kinetic response function cp is a characteristic of the material. If cp 

does not depend on s(t), the kinetics are said to be homogeneous: 

f(t) = cp(s(t)); (2.9) 

we shall in fact assume that the kinetic relation is homogeneous as in (2.9) until Section 5. The 

dissipation inequality (2.8) imposes the requirement 

(p(s)s>0 (2.10) 

on the function (p. For simplicity, we shall assume throughout that (p(s) is odd in s. 
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In any loading program that begins with the bar in the reference configuration, the entire 

specimen will remain in the low-strain phase until a phase transition nucleates. We take x = 0 to 

be the nucleation site, so that upon nucleation, a phase boundary will emerge at x = 0 and move 

into the bar in accordance with the kinetic relation (2.9), the high-strain phase being on the left, 

as assumed in (2.6). The nucleation criterion is taken to be a critical level f of driving force per 

unit area acting on the incipient phase boundary; in view of (2.5), there is a corresponding 

critical nucleation stress G =G* + f /y and hence a critical elongation 6 = a L/u as well. Note c C   1 c       c 

that the "entropy inequality" (2.8) requires that f > 0 when the nucleation site is at x = 0; thus 

necessarily G^G*. If loading continues after the phase change nucleates until the phase 

boundary reaches x = L, the bar is fully transformed, and in further loading, the bar behaves as a 

linearly elastic material with the properties of the high-strain material phase. If the loading is 

then reversed, the bar will eventually nucleate the reverse transition from the high-strain to the 

low-strain phase. We take the nucleation site for the reverse transition to be x = L, and for 

simplicity we choose the nucleation level of driving force per unit area to be - f ; the 

corresponding nucleation stress and critical elongation are a* - f /y  and Ly + (L/|i)(a* - f /y ), 
C     1 1 c     1 

respectively. 

3. Hysteresis for monotonic and homogeneous kinetics. We now implement the 

model described above for a program of loading in which the specimen is at first extended at a 

given constant elongation rate 8 from the reference state until the bar is fully transformed, after 

which the elongation rate is changed to - S, and the bar is shortened until the stress returns to 

zero. 

When the kinetic response function (p(s) increases monotonically with s, one may write 

the kinetic relation (2.9) in the inverted form 

s = 0(f), (3.1) 



where O = cp~ . By eliminating f and s among (2.5), (2.6) and (3.1), one obtains a first order, 

ordinary differential equation for the stress a(t) that applies from the instant of nucleation t = 0 

until the phase boundary has completely traversed the specimen: 

o = ^8--^- OKy^G-a*)). (3.2) 

The initial condition to accompany (3.2) is 

o = cc   whent = 0. (3.3) 

After the reverse transformation is nucleated during unloading, one replaces 5 by -5 in (3.2) to 

obtain the appropriate differential equation, and (3.3) is replaced by the condition corresponding 

to nucleation of the reverse transformation. 

To illustrate the hysteretic behavior associated with monotonic and homogeneous 

kinetics, we consider the special case of the kinetic relation (2.9) for which 

cp(s) = 
f + (l/co)s   fors>0, 

(3-4) 
-f +(l/co)s   fors<0, 

where the material constants f and co are the resistance to phase boundary motion and the phase 

boundary mobility, respectively. Here 0 < f < f , and 0 < CO < °°; dimensionally, CO is a velocity 

per unit stress. The graph of cp is shown schematically in Figure 2. For this kinetic relation, the 

initial value problem (3.2), (3.3) becomes 
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Hyi< . M0 u • 
b + —— (a-a) = -ö,       o = c att = 0, (3.5) 

L r     L c 

where we have set a = a* + f /y  . The load-elongation curve that follows upon solving this 

initial value problem, together with the corresponding one for unloading, is shown schematically 

in Figure 3 for two elongation rates. As one readily sees from (3.5), if a >a as assumed in the 

figure, then for small enough elongation rates, the stress decreases after nucleation during 

loading; otherwise, stress increases monotonically throughout the loading portion of the program. 

4. Unstable kinetic relations. To study the effect of non-monotonic kinetics, we now 

suppose that the kinetic response function (p(s) in (2.9) is odd in s and has the following 

properties: 

<p(0+) = <p(b) = f ,    <p'(0+)<0,    cp'(a) = 0, 

(p"(s) > 0   for s > 0,    <p'(s) { < ° for 0 < s < a, 
for s > a . 

(4.1) 

Such a non-monotonic (p(s) is shown schematically in Figure 4. We view (p(s) as set-valued at 

s = 0: cp(0) = [- f , f ]. When (p has these properties, we call the kinetic response function 

unstable. For convenience, we assume that the nucleation level of driving force per unit area f 

and the resistance to phase boundary motion f coincide: f = f . 

Kinetic relations that are unstable in the above sense were investigated by Rosakis & 

Knowles (1996) for dynamic impact problems in tensile bars. 

It is convenient to retain the differential equation for G(t) in the form (3.2), even though 

the inverse kinetic response function O is multiple-valued when (p is as shown in Figure 4. For 

an unstable kinetic response function, the curve in the o, a-plane described by (3.2) is shown in 

Figure 5 for three cases: 
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Case a:    5 > y b/L    (high elongation rate), 

Case b:   y a/L < 8 < y b/L   (intermediate elongation rate), 

Case c:    0 < 8 < yT a/L   (low elongation rate). 

(4.2) 

The constants a and b appearing in (4.2) are defined in (4.1); see Figure 4. The arrows in Figure 

5 indicate the sense in which the trajectory would be traversed with increasing time if all points 

on the trajectory were accessible. Thus above the a-axis, b > 0, so c increases, while below, the 

motion is to the left. The fact that 3> is multiple-valued gives rise to a lack of uniqueness; for 

some ranges of a, there are three possible values of G. In order to pick a unique solution of (3.2), 

we adopt the convention, sometimes called perfect delay (Poston & Stewart (1978)), which 

asserts that a(t) will jump at an instant t = t* only when there is no alternative, in the sense that 

(3.2) has no solution with o(t) continuous in an open interval containing t*. Thus during the 

loading portion of the constant-elongation-rate process under consideration, the system evolves 

as shown in Figure 6 for each of the three cases in (4.2). In Figures 6(a) and 6(b), the point with 

coordinates a = OM, a = 0 corresponds to an equilibrium state of (3.2) and would represent the 

long-time limit of the solution of the associated initial value problem for loading if the 

differential equation were applicable for all time. In cases (a) and (b), the stress in the bar at first 

increases at the constant rate U.8/L as the curve in Figure 6(a) or (b) is traversed from point A to 

point B. Nucleation of the high-strain phase then occurs, and a decreases discontinuously, 

corresponding to a jump from B to C. At the high elongation rates (case (a)), the stress then 

increases along CD, moving toward the equilibrium point, but stopping when the bar is fully 

transformed, at which time unloading would commence. At the intermediate elongation rates 

(Figure 6(b)), the stress decreases along CD until the transformation is complete. At the low 

elongation rates (Figure 6(c)), nucleation at the point B is followed by a jump in b, after which 

the stress decreases until the point D is reached, at which time a jumps again, reaching the value 
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jJ-8/L at the point E. The stress now increases at this constant rate along EB; during this portion 

of the loading process, (3.2), (3.1) show that s = 0, so that the phase boundary is at rest until the 

stress reaches the value o at the point B. The stress rate b then jumps again, the phase boundary 

resumes its advance, and the cycle BCDEB is traversed again. This process gives rise to 

oscillations in a(t): during the passage from E to B, the phase boundary is stationary as a(t) 

increases, while CD corresponds to decreasing stress and an advancing phase boundary. The 

motion of the phase boundary is thus of "stick-slip" type at the low elongation rates of case (c), 

corresponding to the "jerky motion of the transformation front" observed in the experiments 

described by Krishnan (1985) and leading to the serrations in the load-elongation curve 

mentioned earlier. In the experimental results for a CuSn alloy reported in Figure 18 of 

Nakanishi (1975), serrations in the load- elongation curve appear to occur at low elongation rates 

but not at higher ones. On the other hand, data for NiTi wires shown in Figure 2 of Lin, Tobushi 

et al. (1996) indicate the presence of serrations over three decades of elongation rate at three 

different temperatures. 

The stress-elongation curves associated with the processes just described are shown 

schematically in Figure 7 for the three different regimes of elongation rate (4.2). In the serrated 

part of the curve for the low elongation rate, the "stick" portions are parallel to the stress-strain 

curves of the pure phases (a = jLty and a = fx(y - yJ). One can show that, in the limit 5 -> 0 of 

vanishing elongation rate, the "slip" portions of the curve are asymptotically vertical. Also, the 

number of serrations during the loading process decreases with increasing elongation rate. 

The unloading process, with nucleation and growth of the low-strain phase, can be 

analyzed in a similar way. 

5. Non-homogeneous kinetic relations. We now consider the case in which the kinetic 

response function depends on the instantaneous location of the phase boundary, so that the 
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kinetic relation is 

f=(p(s, s). (5.1) 

We shall assume that (p(s, s) increases monotonically with s for each s, so that (5.1) may be 

inverted to write s = 0(f, s), where 0(-, s) is now single-valued. We shall be concerned with the 

example for which 

f=<p(s,s) = < 
f(s) + (l/co)s,   s>0, 

-f.(s) + (l/co)s,   s<0, 
s = 3>(f, s) =< 

<o[f-fr(s)],   f>fr(s), 

0,   -fr(s)<f<fr(s), 

co[f+fr(s)],   f<-fr(s). 

(5.2) 

where the mobility co is constant, and f (s) > 0 is the resistance to motion encountered by the 

phase boundary when it is located at x = s. The value of driving force per unit area required for 

nucleation of the low-strain - to - high-strain transition at x = 0 is taken to be f = f (0). 

Again we shall consider a loading program in which the bar is first extended at a constant 

elongation rate 8 until it is fully transformed, after which it is shortened at the elongation rate - 8 

until the stress returns to zero. As in the preceding section, we shall limit attention to the loading 

part of the program; an entirely similar analysis applies to unloading. Using (2.5), (2.6)  to 

rewrite the portion of (5.2) appropriate to loading in terms of s, s and 8 rather than s, s and f 

yields 

s = « 
-j-J-o)(8-8r(s)),   8>8r(s), 

(5.3) 

I 0,   8<8r(s), 
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where we have set 

8(s)=  f(s) + YTs + —L. (5.4) 
r        ^YT 

r T      H 

To illustrate, we choose a special "sawtooth" distribution of resistance to phase boundary 

motion defined as follows: 

fr(s) = fc-m(s-js0)   forjs0<s<(j+l)s0,   j = 0,1,2,..., (5.5) 

where f > 0, the slope m > 0 and the spatial "period" s  > 0 are given material constants, with 
c u 

f   = f - ms  > 0; see Figure 8. We view this f (s) as mimicking, at the macroscopic level, an 

intermittent sudden increase in resistance to phase boundary motion due to impediments at the 

microscale, such as defects or inhomogeneities. When f (s) is given by (5.5), the relation (5.4) 

becomes 

8r(s) = 5r
0)(s) = Lyc + (yT - n) s + j n s0 ,   j sQ < s < (j+D sQ,   j = 0, 1, 2,... ,       (5.6) 

where 

f +YT
G*            mL 

Y„ = - >    n = . (5.7) 
c HYT HYT 

In physical terms, y is the strain, measured in units of the transformation strain y  , suffered by 

the particle x = 0 upon nucleation of the high-strain phase, and n is a dimensionless version of 

the slope of the sawtooth distribution of resistance to phase boundary motion. 
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Since s = 8 ds/d8, (5.3) and (5.6) provide a differential equation for s = s(8) applicable 

after nucleation: 

ds 
pdT 

h 
L 

--(YT-n)i-Yc-jn^,    b>&\$) 

0,   8 < 8(j)(s), 

;  js0<s<(j+l)s0,   j = 1,2,...,     (5.8) 

where the dimensionless elongation rate p is defined by 

P = 
^YTW 

(5.9) 

By (5.6), the requirement s(8 (0)) = 0 furnishes the initial condition for (5.8): 

s = 0   for   — = y . (5.10) 

For brevity, we shall only consider the case y  - n > 0. It is convenient to introduce 

dimensionless versions of s, s  and 8 by writing 

(YT " n>  s 
s = ■ >    s   = 

(TT-n)   sQ 

p      L'     0 p       L 
rr,    5 = 

YT - n / 5 (H- (5.11) 

The initial value problem (5.8), (5.10) then becomes 

ds 

d5 

8-8(s)   for   8>8("s), 

0   for  8<8(s), 

i = 0   for   8 = 0, (5.12) 
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where in (5.12) we have set 

5r(s) = 8^(5) = s + j sQ, jsQ < s < (j+l)s0,   j = 0, 1,... (5.13) 

Consider first the restriction of this initial value problem to the interval 0 < s <s_, so that 

j = Oin(5.13): 

ds 

d8 

8 - s   for   8 > s, 

0   for 8 < s, 
-  0<s<s0,    s = 0  for    8 = 0. (5.14) 

The solution to this problem is 

s = F(8) = 8 + e~8- 1    forO<s<sQ. (5.15) 

(Since necessarily 8 > 0 , it is clear in (5.15) that 8 > s for 0 < s < s , and hence that the first of 

the two alternatives on the right in (5.14) always applies.) The function F(8) in (5.15) is 

monotonically increasing and convex. There is a unique positive 8 = A(s ) such that F(8) = s 

One can show that A(s ) increases monotonically from zero to infinity as s  increases over this 

range, but A(s )/s  is monotonically decreasing with s , tending to infinity as s  -> 0 and to unity 

as s  -> °°. These properties of A(s ) imply that there are two cases: in case (a), one has 

s < A(s ) < s yj(y - n), while for case (b) A(s ) > s yj(y - n). Figure 9 displays schematic 

curves described by s = F(8) and 8 = 8 (s) in each of the two cases. The curves OA and OD 

represent s = F(8) in cases (a) and (b), respectively. In case (a), continuation of the solution to 

the initial value problem (5.12) beyond s = s   into the interval s  < s < 2s  (i.e., for j =1) requires 
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that s(8) be constant in the interval A(s) < 8 < s yj(y - n), after which the curve OA is 

"translated" to BC, shown dashed in Figure 9(a). In case (b), the continuation is accomplished 

by solving the differential equation (5.8) for j = 1 subject to an initial condition that corresponds 

to the point D in Figure 9. 

Cases (a) and (b) correspond to different ranges of the dimensionless parameter s ; for a 

given material, (5.11)  shows that these ranges in turn correspond to different ranges of the 

dimensionless elongation rate p. Indeed, one can show that case (a) arises for low elongation 

rates p < p  , case (b) for high rates p > p ; the critical dimensionless elongation rate p is given 

by p = YT(YT - n)(s /L)A~ , where A = A is the unique positive root of the equation 

Y 
— (l-e"A) = A. (5.16) 
n 

In case (a), continuation of the solution beyond s = 2s  is carried out by further trans- 

lations of the curve corresponding to (5.15), leading to more intervals of constant s(8). In case 

(b), continuation is accomplished by solving further initial value problems for (5.8), with j > 2. 

The trajectories s = s(8) constructed by the process described above are shown 

schematically in the plane of the physical variables 8 and s in Figure 10. It is of interest to note 

that the motion of the phase boundary is of stick-slip type at low elongation rates (case (a)); 

indeed, one can show that - as suggested by (5.8), (5.6) - the trajectory s = s(8) coincides with 

the locus 8 = 8 (s) in the limit 8 -> 0. At the higher rates of case (b), the motion, though "jerky", 

is not stick-slip. 

Finally, the relation between stress and elongation during the extensional part of the 

loading cycle may now be obtained by using the solution s = s(8) just constructed in (2.6): 

G = (i(5/L - s(8)/L). After nucleation of the high-strain phase during loading, the a-8 relation 
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may be written in terms of the dimensionless variables introduced in (5.11) as 

= G + — (6 - —— 1(h)). (5.17) c    Y - n v     YT- n      ' 

During the initial period of post-nucleation loading for which s < s   and 5 < A(s ), (5.15) 

applies, so that (5.17) may be written in the form 

UP        - -        - 
o = c +-^— G(8),   0<8<A(s_), (5.18) 

YT-n V 

where 

G(8)= —— (l-e~6) -—— 8. (5.19) 
YT - n YT - n 

One shows readily that G(0) = 0, G'(0) = 1, G is concave and that G has a maximum at 

M log(Y17n). One can show 8   lies in the interval 0 < 8 < A(s ) if and only if the 

dimensionless elongation rate p satisfies p < p   , where 

(YT-n) s 
P** = " • (5-2°) KM    log (Y^n) + n/YT - 1  L 

Using the fact that YT, > n, one can further show that p., > p , where p is the dimensionless ° 'T rM     rc rc 

elongation rate below which stick-slip motion occurs; recall the discussion leading to (5.16). 

Thus so far as the stress-elongation relation is concerned, there are three regimes of elongation 

rate: 
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Case i:    0 < p < p     (low elongation rate) 

Case ii:   p < p < p       (intermediate elongation rate), 

Case iii: p > p       (high elongation rate). 

(5.21) 

The properties of G, together with the continuations of s = s(5) described above, allow us to draw 

the stress-elongation curves for loading as shown schematically in Figure 11. Figure 11 (a) 

corresponds to the low elongation rates of case i; the straight portions of the curve on which 

s = constant such as AB, CD, etc. correspond to the "stick" parts of the phase boundary motion 

shown in Figure 9(a) or Figure 10(a). These intervals of linearly elastic behavior do not occur in 

the stress response at the intermediate or high elongation rates of Figure 1 l(b, c). For 

intermediate loading rates (case ii), the stress-elongation curve still has multiple local maxima 

and minima (Figure lib); the phase boundary moves jerkily but without sticking. At high 

loading rates (Figure 1 lc), the stress-elongation curve becomes a monotonic, though still 

exhibiting multiple discontinuities in slope. Note that serrations are present in the 

stress-elongation curve at all elongation rates, in contrast to the situation for unstable kinetics 

found in Section 4, where serrations disappear at sufficiently high loading rates. 
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Figure 1.   The trilinear elastic material. 
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Figure 2.     Monotonie, homogeneous kinetic relation. 
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Figure 4.     Unstable kinetic response function (p(S). 
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Figure 5.     Graphical representation of equation (3.2) for unstable kinetics. 
Elongation rate is (a) high (b) intermediate (c) low. 
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(b)     y a < 8 < y b 
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Figure 6.    Trajectories of equation (3.2) for unstable kinetics with perfect 
delay.   Elongation rate is (a) high (b) intermediate (c) low. 



(a)     8 > YTb (b)    Y a < 8 < Y b 

(c)    0 < 8 < y a 

Figure 7.     Stress - elongation curves for unstable kinetics with perfect delay. 
Elongation rate is (a) high (b) intermediate (c) low. 
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Figure   8.     Sawtooth distribution of resistance to phase 
boundary motion. 
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Figure 9.    Trajectories corresponding  to (5.16), (a) low 
elongation rate (b) high elongation rate. 
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Figure 10.     Phase boundary motion S = S(8), 8 = 8t, at low and 
high elongation rates 8. 



(a)   Low elongation 
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(b)   Intermediate 
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Figure 11.    Stress - elongation curves for nonhomogeneous kinetics 
at various elongation rates. 


